Chirality switching and winding or unwinding of the antiferromagnetic NiO domain walls in Fe/NiO/Fe/CoO/Ag(001).

نویسندگان

  • J Li
  • A Tan
  • S Ma
  • R F Yang
  • E Arenholz
  • C Hwang
  • Z Q Qiu
چکیده

Fe/NiO/Fe/CoO/Ag(001) single crystalline films were grown epitaxially and investigated by x-ray magnetic circular dichroism and x-ray magnetic linear dichroism. The bottom Fe layer magnetization is pinned through exchange coupling to the CoO layer and the top Fe layer magnetization can be rotated by an in-plane external magnetic field. We find that the NiO spins wind up to form a domain wall due to the perpendicular NiO/Fe interfacial coupling as the top layer Fe magnetization rotates from 0° to 90°, but switch wall chirality and unwind the wall as the Fe magnetization rotates from 90° to 180°. This observation shows that Mauri's 180° domain wall does not exist in perpendicularly coupled ferromagnetic-antiferromagnetic systems in the strong coupling regime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems

Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely stu...

متن کامل

Ultrathin Films and Surface Effects I

The thickness dependence of the topographic and magnetic structure of ultrathin Fe films grown on polycrystalline NiO films under ultrahigh vacuum ~UHV! conditions was studied to investigate the growth mechanism of the ferromagnetic film and the corresponding magnetic interaction with the antiferromagnetic substrate. Externally prepared NiO films of 60 nm thickness were cleaned by heating in UH...

متن کامل

Comparison of MFM/STM Data of Patterned Ultrathin Iron Films Grown on Si(001), SiO2, and NiO in UHV

The topographic and magnetic structures of patterned 20-nm-thick Fe films grown on Si (001), polycrystalline NiO, and SiO2 substrates are compared by scanning tunneling microscopy/magnetic force microscopy measurements under ultrahigh vacuum conditions to investigate the influence of the different substrates. Iron grows as a polycrystalline film. The size of the crystallites decreases from Si t...

متن کامل

Iron oxidation, interfacial expansion, and buckling at the Fe/NiO(001) interface.

In order to provide a structural basis for a physical understanding of exchange bias in metal/magnetic-oxide interfaces, we have determined the structure of the Fe/NiO(001) interface by means of x-ray absorption spectroscopy and ab initio density functional theory calculations. A Fe-Ni alloyed phase on top of an interfacial FeO planar layer is formed. The FeO layer exhibits a 7% expanded interl...

متن کامل

Spin reorientation at the antiferromagnetic NiO(001) surface in response to an adjacent ferromagnet.

Polarization dependent x-ray photoemission electron microscopy was used to investigate the spin structure near the surface of an antiferromagnetic NiO(001) single crystal in response to the deposition of a thin ferromagnetic Co film. For the cleaved NiO surface we observe only a subset of bulklike antiferromagnetic domains which is attributed to minimization of dipolar energies. Upon Co deposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 113 14  شماره 

صفحات  -

تاریخ انتشار 2014